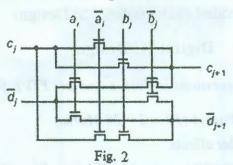
											Code No. : 2160	02
V	A										ING (Autonomous), HYDERABAD	
		M	[.E. (ECI	E: C	BC	S) I-	Sem	este	r Ma	nin Examinations, January-2018	
						(E	mbe	dded	Sys	tems	s & VLSI Design)	
								D	igita	IIC	Design	
Tin	ne:	3 ho		4	4			4			Max. Marks: 60	
			IVO	ne: A	insu	er A		quest	ions i	n Pa	rt-A and any FIVE from Part-B	
							1	Part-	4 (10	$\times 2$	= 20 Marks)	
1.	E	xplai	n MC	SFE	ET se	econ	d ord	ler ef	fects.			
2.			ropag n tech				of a C	CMOS	Sinve	erter	modelled as a First-Order RC Network (Assume	
3.	E	xplai	n cha	rge l	leaka	age p	orobl	em ir	dyn	amic	CMOS circuits.	
4.	Ir	nplei	nent -	4×1	mux	usi	ng tr	ansm	issio	n gat	e logic.	
5.	C	omp	are Pl	LL a	nd I	DLL	in V	LSIC	Clock	circ	uits.	
6.	D	raw	and e	xpla	in ci	rcuit	diag	gram	of Si	mpli	fied TSPC latch.	
7.	D)iscu:	ss des	ign (chall	enge	es in	powe	er dis	tribu	tion in VLSI systems.	
8.	I	mple	ment	2 bit	con	npara	ator 1	using	1 bit	com	parator.	
9.	D)raw	and e	xpla	in th	e cir	cuit	diagr	am o	fa4	T SRAM cell.	
10.	E	stim	ate th	e LE	ofa	a CM	IOS I	NAN	D4.			
								Part-	-B (5	× 8	= 40 Marks)	
11.	. a	,								is cl +2.5	t load of 3 pF: Compute the static and dynamic locked as fast as possible. V $R_L = 75 \text{ k}\Omega$	[5]
			1451		¥4					-	V _{out}	
								V _{an} -		MI	W/L = 1.5/0.5	
										-	Fig. 1	
	ł		sume e die y								e of 2.5 cm ² , 1 defects/cm ² , and α =3. Determine	[3]
12	. 8	0.2	25μm	and	0.75	μm/	0.25	μm, r	espec	ctive	assume NMOS and PMOS devices of $0.5 \mu m$ / ly. Find rise time and fall time this sizing should erise and fall times.	[5]
	1	b) Im	plem	ent 2	KOR	and	XN	OR u	sing	Com	plementary pass-transistor logic (CPL).	[3]

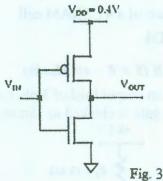
13. a) Explain Design Techniques-dealing with Capacitive Cross Talk.

Estimate the Control voltage.

b) Implement a 200 MHz current starved ring oscillator using not more than 11 stages.


[3]

[5]


- 14. a) Implement a 16 bit Carry Save adder and estimate its propagation delay.
- [5]
- b) Show how the arithmetic module in Figure 2 can be used as a comparator.

[3]

[5]

- 15. a) Estimate the word-line and bit-line capacitances of a 512 Kb SRAM arranged as a 1024×512 array with access transistors of size $(0.5\mu/0.1\mu)$. Assume wire cap = 0.3 fF/ μ , bit line (contact) cap = 0.5 fF, Transistor D/S cap = Gate cap = 2 fF/ μ , and Cell size is $50\lambda \times 40\lambda$. Use 0.13μ technology and $1\mu = 20\lambda$.
 - b) Explain write and read operations in a 3T DRAM cell. [3]
- 16. a) The inverter in Figure 3 operates with V_{DD} =0.4V and is composed of |Vt| = 0.5V devices. [5] The devices have identical I_0 and n, calculate the switching threshold (VM) of this inverter.

- b) Draw the circuit diagram of four-input pseudo-NMOS NOR and NAND gates. [3]
- 17. Answer any two of the following:
 - a) Explain the function of a 16 bit CSA. Estimate its t_{pd}. [4]
 - b) The layout of shifters is dominated by the number of wires running through a cell. For both the barrel shifter and the logarithmic shifter, estimate the width of a shifter cell as a function of the maximum shift-width M and the metal pitch p.
 - c) Design a Row decoder to select one out of 16 bit lines based on address bits A3, A2, A1, and A0 and their complements. Compare its performance without a pre-decoder.

(अ(अ(अ))